Last Updated: 2/12/2026
Getting Started with Code-to-Documentation AI Agent
Overview
The Code-to-Documentation AI Agent is an intelligent system designed to automatically generate and maintain documentation from source code. This guide will help you get up and running quickly.
What is Code-to-Doc?
Code-to-Doc is an AI-powered agent system that:
- Automatically extracts function docstrings and code documentation
- Generates comprehensive documentation using RAGFlow integration
- Maintains up-to-date docs as your codebase evolves
- Provides intelligent context through retrieval-augmented generation (RAG)
Architecture Overview
The system consists of several key components:
Core Components
- AI Agent Layer - Orchestrates documentation generation workflows
- RAGFlow Integration - Provides context-aware documentation generation
- Code Parser - Extracts docstrings and code structure
- Documentation Generator - Creates formatted documentation output
Prerequisites
Before you begin, ensure you have:
- Access to the code repository
- Python 3.8+ installed
- API credentials for the AI service
- RAGFlow integration configured
- Basic understanding of your codebase structure
Quick Start
Step 1: Installation
# Clone the repository
git clone <repository-url>
cd code-to-doc-demo
# Install dependencies
pip install -r requirements.txtStep 2: Configuration
Create a configuration file with your settings:
# config.yaml
ai_agent:
model: "claude-3"
api_key: "your-api-key"
ragflow:
endpoint: "https://ragflow-instance.com"
api_key: "your-ragflow-key"
source:
code_paths:
- "./src"
- "./lib"Step 3: Run Your First Documentation Generation
# Generate documentation for your codebase
python generate_docs.py --config config.yaml --output ./docsKey Concepts
Function Docstrings
The system extracts docstrings from your code and uses them as the foundation for documentation. Ensure your code follows standard docstring conventions:
def example_function(param1: str, param2: int) -> bool:
"""
Brief description of the function.
Args:
param1: Description of param1
param2: Description of param2
Returns:
Description of return value
"""
passRAGFlow Integration
RAGFlow enhances documentation generation by:
- Providing relevant context from existing documentation
- Maintaining consistency across documentation
- Suggesting improvements based on best practices
AI Agent Workflow
The agent follows this workflow:
- Scan - Identifies code files and structures
- Extract - Pulls docstrings and metadata
- Enhance - Uses RAGFlow to add context
- Generate - Creates formatted documentation
- Validate - Checks for completeness and accuracy
Common Use Cases
Generate API Documentation
python generate_docs.py --type api --output ./api-docsUpdate Existing Documentation
python generate_docs.py --mode update --input ./docs --output ./docsGenerate Documentation for Specific Modules
python generate_docs.py --modules auth,database,api --output ./docsBest Practices
- Keep docstrings up-to-date - The quality of generated docs depends on your source docstrings
- Use consistent formatting - Follow your team’s docstring conventions
- Review generated docs - Always review AI-generated content before publishing
- Iterate and improve - Use feedback to refine the documentation generation process
- Integrate with CI/CD - Automate documentation generation in your pipeline
Troubleshooting
Documentation Generation Fails
- Check your API credentials are valid
- Ensure code paths in config are correct
- Verify Python version compatibility
Missing or Incomplete Documentation
- Review source code docstrings
- Check RAGFlow connection
- Increase context window in configuration
Performance Issues
- Limit scope to specific modules
- Use incremental generation mode
- Optimize RAGFlow query parameters
Next Steps
Now that you’re set up, explore these advanced topics:
- System Design Documentation - Deep dive into architecture
- RAGFlow Integration Guide - Advanced RAGFlow configuration
- CI/CD Integration - Automate documentation generation
- Customization Guide - Customize output formats and templates
Support & Resources
- Documentation Space: Check the code-to-doc-demo space for detailed documentation
- Issues: Report bugs and request features in the repository
- Team Chat: Join the engineering channel for questions
Contributing
Interested in improving the system? Check out:
- Contribution guidelines in the repository
- Open issues and feature requests
- Development setup documentation
Questions? Reach out to the engineering team or check the code-to-doc-demo documentation space for more details.